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Abstract. The statistical mechanics of a two-dimensional Coulomb gas confined to one dimension
is studied, wherein hard core particles move on a ring. Exact self-duality is shown for a version of
the sine-Gordon model arising in this context, thereby locating the transition temperature exactly.
We present asymptotically exact results for the correlations in the model and characterize the low-
and high-temperature phases. Numerical simulations provide support to these renormalization
group calculations. Connections with other interesting problems, such as the quantum Brownian
motion of a particle in a periodic potential and impurity problems, are pointed out.

1. Introduction

The physics of the inverse-squared exchange Heisenberg model, the so-called Haldane Shastry
model [1, 2] has been a field of considerable activity recently. Here one considers a spin-1

2
Heisenberg antiferromagnet in one dimension on a ring ofLsites with an exchange Hamiltonian

H = J
∑
i<j

φ2

sin(φ(xi − xj ))2
ESi · ESj (1)

with xj as integers denoting lattice points andφ = π/L. The ground state of the model of
equation (1) in a sector withN spin reversals (relative to the ferromagnet) located at{. . . xj . . .}
is given by

ψ(x1, x2, . . . , xN) = (−1)
∑
xj
∏
i<j

sinβ/2(φ(xj − xi)) (2)

with β = 4. The model is interesting from several points of view, such as the connection with
Gutzwiller projection in strongly correlated systems, and from the intimate connection with
the isotropic Heisenberg antiferromagnet, the Bethe chain. The spin–spin correlation function
of the above wavefunction atβ = 4 has the same decay exponent as the Bethe chain, namely
unity. Further, atβ = 2, the wavefunction is the ground state of the free Fermi gas, with
either long-ranged hops or just nearest neighbour hops. The first case atβ = 2 corresponds
to dropping thezz part of equation (1), and the second to the anisotropic Heisenberg model:
H = ∑i (S

x
i S

x
i+1 + Syi S

y

i+1 +1Szi S
z
i+1) at1 = 0. Thus we find thatβ = 4 and 2 are in close

correspondence with1 = 1 and 0, respectively. The Heisenberg model is well known [3] to
have a transition to a massive Nèel ordered phase at1 = 1, and so one might suspect that the
wavefunction in equation (2) could develop long-ranged order (LRO) asβ increases from 4,
perhaps even atβ = 4+, a possibility we shall investigate in this paper. It is obvious that Nèel
order can also be viewed as crystalline order of hard core bosons, where the bosons correspond
to the spin reversals of the Heisenberg system via the familiar lattice gas analogy. We will
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almost exclusively use this point of view below. Note that the density variablesρi = ( 1
2 − Szi )

take values 0, 1 so that we can map density correlators to spins readily, withN the number of
hard core particles restricted toN 6 L/2.

For the case ofβ 6= 2, 4 the wavefunctions do not represent either symmetric
or antisymmetric functions, and are hard to interpret as physically allowed states for
bosons/fermions, unless one imposes a rather non-analytic restriction of taking the modulus.
For larger even integer values ofβ = 6, 8 . . . the wavefunction in equation (2) is an eigenstate
of the anisotropic version of the Hamiltonian in equation (1), but only in restricted sectors
of numbers of particles, for fillings up to2

β
, since beyond this filling the states are no longer

‘good functions’ in the sense of [4], i.e. they have Fourier components that ‘spill out’ of the
first Brillouin zone, requiring umklapp.

The evaluation of correlations in the above wavefunction reduces to those of a 2D Coulomb
gas confined to a 1D ring, but with the positions of the particles discretized to a lattice. This
is a far reaching distinction from the case where the charged particles are in the continuum, a
case that is familiar from the well known results of Dyson, Mehta and Gaudin [5] for random
matrices. In the latter case, the Coulomb gas does not crystallize in the sense of possessing
LRO, although the density correlators are arbitrarily slowly decaying. In the lattice case one
expects LRO, which is consistent with Nèel order.

The discrete Coulomb gas (DCG) has been subject to a few exact calculations. Gaudin [6]
computed the normalization constant of the wavefunction and the grand partition function
exactly at three values ofβ = 1, 2, 4. His isothermal calculation of the grand partition
function at these values of the temperature gives the distribution of zeros in the thermodynamic
limit as lying on segments of the unit circle. Mehta and Mehta [7] computed the density
correlators exactly at these values ofβ. The calculations atβ = 2 are not unexpected, since
the model atβ = 2 reduces to a free Fermi lattice-gas, but the other cases are highly non-trivial.
Sutherland [8] has presented results at zero temperature for the allowed ground state patterns,
that turn out to be quite complex for arbitrary rational fillings.

In this paper, we present some asymptotically exact results on this problem, using a
combination of renormalization group (RG), and exact duality arguments on related models.
We only consider simple rational fillings in this work with fillingf = N

L
= 1

2,
1
3,

1
4 . . . We

find that for each such fillingf there is a transition temperatureβc = 2/f 2 at which the
LRO sets in. In section 2 of this paper, we show that the DCG is asymptotically equivalent
to a sine-Gordon model that has recently been studied extensively in connection with several
interesting problems. This is achieved through a series of approximations that lead to a phonon
representation at high temperatures, and a kink representation at low temperatures. Correlation
functions are discussed in both representations. In section 3, the analogues of the phonon and
kink representations are constructed for a model asymptotically equivalent to the DCG, and
an exact duality connecting the two pictures is obtained. The duality found by us is closely
related to that found by Kjaer and Hilhorst [9], who studied a discrete height problem—a
roughening model, where the heights interact via a 1/r2 interaction. Our sine-Gordon model
reduces to this model on integrating out the Gaussian displacements. Section 4 presents
numerical results that confirm the results of the previous sections and the difficulties involved
in extracting true exponents are highlighted. Connections to related models and other general
issues are discussed in section 5.
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2. Phonon and kink representations

In order to understand the spin correlations for these wavefunctions, it is convenient to
convert the problem into one in classical statistical mechanics. For a ring withN = fL

spins, ifψ(x1, x2 . . . xN) is the amplitude for the down spins located atx1, x2 . . . xN , then
|ψ(x1, x2 . . . xN)|2 is the corresponding probability. By rotational symmetry, the spin–spin
correlation function〈S(x) · S(y)〉 is equal to 3Sz(x)Sz(y). This can be calculated from|ψ |2,
without any knowledge of the phase ofψ . (This is not possible in general for higher-order
correlations, where one cannot always get rid ofS+ andS− operators by symmetry arguments.
In this paper, we shall only consider two-point correlations.)

If we express|ψ(x1, x2 . . . xN)|2 as exp[ln|ψ |2], we can view− ln |ψ |2 as the energy of
a classical system ofN particles (distributed overL = N/f sites), and|ψ |2 as the statistical
weight assigned in thermal equilibrium to a particle configuration. For the wavefunctions we
consider here,− ln |ψ |2 has the form

− ln |ψ(x1, x2 . . . xN)|2 = −β
2

∑
i<j

ln[φ−2 sin2 φ(xi − xj )] + const. (3)

The additive constant at the end of the right-hand side is necessary in order to ensure that the
wavefunction is normalized; however, in the statistical mechanics picture, it only gives rise
to an overall proportionality factor in the partition function, and can be ignored. The 1/φ2

inside the argument of the logarithm has been pulled out from the additive constant so that the
L→∞ limit exists.

Equation (3) describes a collection of particles with pairwise interactions. Every particle
repels every other particle logarithmically. The argument of the logarithm is effectively (the
square of) the straight line (or chord) distance between two points,xi andxj , on the ring.
Thus the system consists of a charged gas with 2D Coulomb interactions, but with the particles
confined to a (1D) ring lattice. The prefactorβ has a natural interpretation of the inverse
temperature.

In its ground state, the system has one particle on every 1/f th site, at least for simple
fractionsf that we consider here (say1

2, 1
3 etc). As the temperature is lowered, i.e.β is raised,

there is the prospect of the system crystallizing into a LRO state. As we shall see in this paper,
this indeed happens atβ = 2/f 2, and is the result of a combination of two factors. Firstly,
although one normally expects short-range order in a 1D system, the long-ranged logarithmic
interactions convert this to quasi LRO even at high temperatures. Secondly, the restriction that
particles can only be placed on lattice sites crystallizes the system at low temperatures.

There are two complementary approximations that one can make on the ring-lattice
Coulomb gas, one appropriate for high temperatures and one for low temperatures. Both these
approximations yield a 1D long-ranged sine-Gordon model, but with different parameters,
reflecting the well known duality of this model. This duality is usually derived for a continuum
sine-Gordon model [10], but there are slight differences for the lattice version, as we shall now
see.

2.1. Phonon representation

At high temperatures, there are large fluctuations in the separation between neighbouring
particles. It is reasonable to expect that, in this regime, the underlying lattice constraint might
not be very important. Accordingly, in equation (3), we expressxi = 1

f
(i + ui), whereui/f

is the deviation from an ideal crystalline state. The hard lattice constraint is replaced with a
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periodic potential, to obtain

βH [{u}] = −β
2

∑
i<j

ln

[
L2

π2
sin2 π(i + ui − j − uj )

fL

]
+
∑
i

V (ui). (4)

The ui are now continuous variables, and the potentialV favours locating the particles
at lattice sites. As an example considerV (ui) = −|const| cos(2πxi) which reduces to
−|const| cos(2πui/f ), leading to the sine-Gordon theory considered below. More formally,
the hard lattice constraint can be expressed in terms of a singular periodic potentialV :
V (u) = ln[

∑
n exp(2πniu/f )]. We shall instead consider the general class of potentials with

periodicityf , and later exploit the universality under the RG. Expanding the first term on the
right-hand side of equation (4), to second order inu we have

βH [{u}] = β

4

π2

N2

∑
i<j

(ui − uj )2
sin2[π(i − j)/N ]

+
∑
i

V (ui). (5)

In Fourier space, expandinguj =
∑

q(ũq/
√
N) exp[ijq], it can be shown† that this is

equivalent to

βH [{u}] = β

2

∑
q

(π |q| − q2/2)ũq ũ−q +
∑
i

V (ui). (6)

The sum overq ranges from−π toπ . Compared with theπ |q| term, theq2 is irrelevant in the
RG sense, and can be ignored in calculating long wavelength properties. Higher-order terms
in the expansion of equation (4) in powers ofu are similarly unimportant, as we see later.

2.2. Coulomb gas

We now cast the problem of computing the partition function for equation (6) in the form of
another Coulomb gas, but with a variable number of charge pairs, controlled by a chemical
potential. Writing a general expansion exp(−V (uj )) =

∑
mj
cmj exp(2π iujmj/f ), consistent

with the periodicityu→ u + f we consider the partition function

Z =
∫

[du] exp

[
−
∑
q

G(q)ũq ũ−q

]∏
j

(∑
mj

cmje
2π iujmj /f

)
(7)

where theuj are continuous variables, andG(q) is some function ofq. (Corresponding to
equation (6), one would haveG(q) = (β/2)(π |q| − q2/2).) This is equivalent to

Z =
∑
m1

∑
m2

. . .

∫
[du] exp

[
−
∑
q

G(q)ũq ũ−q

](∏
j

cmj

)
e2π i/f

∑
j ujmj . (8)

If G(q = 0) = 0, the only terms in this sum that are not zero are those for which
∑

j mj = 0.
Integrating out theu, we have

Z ∝
∑
m1

∑
m2

. . . δ∑mj ,0

(∏
j

cmj

)
exp

[
− π2/f 2

∑
q

(m̃qm̃−q)/G(q)
]
. (9)

This is the partition function for a charged gas. (If we restrictcm to be non-zero only for
m = ±1 or 0, we have a dilute gas of unit positive and negative charges.) Using the fact that∑

j mj = 0, the exponent in the exponential is equal to

2π2

Lf 2

∑
i<j

mimj
∑
q

1− cosq(i − j)
G(q)

= π

f 2

∑
i<j

mimj

∫
dq

1− cosq(i − j)
G(q)

(10)

† We use (π
N
)2
∑N−1
n=1 cosec2( nπ

N
) exp(ikn) = −|k|π + 1

2k
2 + π2

3 (1− 1
N2 ) with −π 6 k 6 π .



The 2D Coulomb gas on a 1D lattice 1135

where we have taken theL → ∞ limit in the last step. For the caseG(q) = πβ

2 |q|, i.e. the
leading low-energy part of equation (6), we can evaluate the integral easily for large separation
of the charges, and find the dilute Coulomb gas partition function:

Zk−k̄ =
∞∑

mi=−∞
δ6mi=0

(∏
j

cmj

)
exp

[
− βeff

{
−
∑
i<j

log |i − j |mimj − µeff
∑

m2
i

}]
(11)

with βeff = 4
βf 2 and the ‘chemical potential’µeff = −(γ + logπ)/2 = −0.860 973 with

γ Euler’s constant (0.577 216). The Coulomb interaction binds unlike charges, and repels

like charges. The quadratic terms ofG(q) give rise to a sublogarithmic part in the interaction
energy, but do not affectµeff . The objectµeff is not really a chemical potential, since the
relative weights assigned to different charges depends on the coefficients{cm}. However, for
largeβeff , where the partition function is dominated bymi = 0,±1,µeff may be viewed as
the chemical potential associated with the (unit) positive and negative charges in the system,
provided thatc±1 = c0. Alternatively,µeff can be absorbed in a redefinition of the coefficients
cm, and is included when we start with general periodic potentials in equation (6).

2.3. Kink representation

In order to develop this representation, it is convenient to first rewrite equation (3) as

βH [{ρ}] = −βf 2
∑
{i<j}

mimj ln

[
L

π

∣∣∣∣sin
π(i − j)

L

∣∣∣∣] + const. (12)

The variablemi is(1−f )/f if the sitei is occupied, and−1 if the site is unoccupied. Compared
with equation (3), this is equivalent to adding a background charge of−f at every lattice site,
and then reducing the unit of charge tof ; although this changes the total energy (the additive
constant in equation (12) is different from that in equation (3)), the energy difference between
different configurations—and therefore their relative statistical weight—is unaltered.

At low temperatures, the system is in an almost perfect crystalline state, with one particle
after every 1/f sites. There are long segments that are shifted byl sites with respect to a
reference crystalline state, withl = 0, 1, 2 . . . (1/f − 1). (Shifting a segment by 1/f sites is
equivalent to not shifting it at all.) There is an effective build-up of charge at the ‘kinks’ at
the segment boundaries. At low temperatures, the dominant configurations have neighbouring
segments with a relative shift±1 corresponding to a unit positive charge (a kink) or a unit
negative charge (an antikink) at the segment boundary. Note that there isno alternation rule
for the kinks here, unlike the case for a system where the ground state has ferromagnetic order
rather than antiferromagnetic.

We now show that the energy of the system can be understood as an interaction of
these charged kinks. As illustrated in figure 1, two neighbouring segments can be viewed

Figure 1. Typical lattice segment forf = 1
3 . Every positively charged site is doubly charged. The

vertical lines denote the boundaries between adjacent quadrupoles, and lie on the midpoints of the
positively charged sites. The thick section in the middle of the line segment is a kink, consisting of
one positive charge at either end and onlyonenegative charge inside. The total charge of the kink
is thus +1.
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as each consisting of a long string of quadrupoles, with a residual charge between them. Each
quadrupole consists off − 1 negative charges terminated by a charge +(f − 1)/2 at either
end. The residual charge associated with the kink is±1; in figure 1, it is +1. Since the
interaction energy between a quadrupole ati and a charge atj decays as 1/(i − j)2, the total
interaction energy betweenall the quadrupoles in a segment and a kink not at its terminus
decays as 1/l when the typical segment size isl. The interaction between the quadrupoles
in non-adjacent segments can likewise be neglected. One is left with the interaction between
the kinks. (The interaction between a kink and its adjacent segments, or two neighbouring
segments separated by a kink, can be interpreted as a self-energy or chemical potential for the
kink; as in the previous section, we need not keep track of this.) The final picture that emerges
is equation (11), withmi restricted to 0,±1 andβeff replaced byβf 2.

2.4. Relationship between the representations

The kink–antikink gas, that we derived from equation (3) by a sequence of approximations, thus
leads to a partition function that is essentially thesameas obtained in the phonon representation,
except thatβf 2 is replaced by 4/βf 2. This is not surprising, since the continuum 1D long-
ranged sine-Gordon model has such a duality [10]. However, in the discrete version, when
the strength of the potentialV (ui) in equation (4) tends to infinity, corresponding to a lattice
model, the fugacity of the kinks in the kink representation does not tend to zero. This is because
ui can jump from one integer to another when the discrete variablei is increased by unity,
whereas discontinuities inu(x) are not allowed in the continuum version.

For β = 2/f 2, the system is at its self-dual point. Of course, the duality that we have
arrived at is only an approximate one. In particular, if one starts from equation (3) at the
self-dualβ = 2/f 2, and proceeds along the phonon and kink routes, the resultant chemical
potentials and various sublogarithmic interaction terms are different. In section 3, we shall
obtain an exact duality for a model using a restricted class of periodic potentialsV (u), and a
phonon spectrum that is linear in|q| only for smallq.

2.5. Renormalization group

The long-wavelength limit of equation (6) has been studied using the RG [11] in connection
with several different problems [12,13]. We shall cite the results here without deriving them.

From the|q| form of the propagator for smallq, one can see from power counting that
the u(x) field is dimensionless in the absence of loop corrections. This is similar to the
Kosterlitz–Thouless transition [14]—or the sine-Gordon model—in 2D systems. Unlike the
case there, however, the singular form of the propagator here prevents any renormalization of
u (or equivalently ofβ) to any loop order.

If the potentialV (u) is expanded in its harmonics, all higher harmonics die away rapidly
compared to the lowest one, and can be neglected. ReplacingV (u) with g cos(2πu/f ), one
obtains a 1D long-range version of the sine-Gordon model. Calculating one-loop corrections,
one finds dg/dl = g(1− 2/βf 2) + O(g3) (shifting u by f/2 shows that there is ag → −g
symmetry) and hence the operatorg is irrelevant forβ < 2/f 2, and relevant forβ > 2/f 2.
Although this is a weak-coupling result, it has been argued to be true even for largeg. At
β = 2/f 2, by mapping the problem to the scattering from a potential of 1D free fermions, it
can be shown that the behaviour is not universal, and depends ong.

In the high-temperature phase, equation (6) thus renormalizes to a harmonic phonon
energy. The form of the density–density correlations can be obtained from the following
argument. The deviation of the density from the mean has a lowest Fourier component of
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the formδρ(x) = cos(2πf x + θ(x)), whereθ(x) varies more slowly than the oscillations in
cos(2πf x). Comparison with the definition of the (coarse-grained) displacement fieldu(x)

shows that this is effectively cos[2π(f x+u(x))]. The connected part of the density correlation
function is then of the form

Kc(x − y) ∼ 〈δρ(x)δρ(y)〉 ∼ 〈cos 2π(f x + u(x)) cos 2π(fy + u(y))〉. (13)

Using the fact thatu(x) is a Gaussian field, this simplifies to

Kc(x − y) ∼ cos 2π(f x − fy) exp{−2π2〈[u(x)− u(y)]2〉} ∼ cos 2π(f x − fy)
|x − y|4/β (14)

where the last expression is an asymptotic result. ThusKc(x − y) is a product of two terms:
a rapidly oscillating factor, corresponding to the periodicity of the ideal crystalline state, and
a factor that decays as a power of the separation between the points. In the low-temperature
phase, whereg is relevant,u(x) is almost always at the minima of the potentialV (u), and
there is LRO in the system. This is easiest to see in the kink representation.

For β > 2/f 2, proceeding through the kink representation yields equation (6), with
β → 4/(βf 4), i.e. in the high-temperature phase. As we shall now see, the resultingirrelevance
of the operatorg implies LRO in the kink representation. The relative phase of the local
periodic structure at two pointsx andy, compared with a reference crystalline configuration,
is 2πf {nk(x, y)−nk(x, y)}, wherenk(x, y) andnk(x, y) are the number of kinks and antikinks
respectively betweenx andy. As in the phonon representation, the correlation function is then
of the form

Kc(x − y) ∼ 〈exp[2π if {nk(x, y)− nk(x, y)}]〉. (15)

Since in the kink representation the potentialV (u) in equation (6) withβ → 4/βf 4 is
interpreted as the generating function for the kinks and antikinks, the right-hand side of
equation (15) can be obtained by changingV (u) in the region betweenx and y from
g cos(2πu/f ) to g cos(2πf + 2πu/f ) (so that e±2π iu/f picks up a factor of e±2π if ). If the
partition function thus modified is denoted byZ(g, g′), and the original partition function by
Z(g, g), we have

〈exp[2π if {nk(x, y)− nk(x, y)}]〉 =
Z(g, g′)
Z(g, g)

. (16)

If g is an irrelevant operator, this flows to a constant at long distances under renormalization
(the value of the constant depends on the finite corrections that are removed along the course of
the renormalization flow), and there is LRO. By expanding the right-hand side of equation (16)
in powers ofg for smallg, it can be seen that the correlation function decays to its long-distance
limit with a power law transient rather than an exponential.

An alternative way to understand the correlations in the kink representation is to start with
equation (12). At low temperatures, the system consists of bound pairs of kinks and antikinks.
The probability that the number of kinks and antikinks between two pointsx andy separated
by a large distance are not matched, is then dominated by cases when a kink (antikink) lies
just inside the interval(x, y) and its partner lies just outside. This is clearly independent of the
separation betweenx andy when the separation is large, so thatKc(x − y) goes to a non-zero
limit for large |x− y|. The phase transition then corresponds to an unbinding point, where the
mean separation between bound pairs diverges, i.e.

∫ |x−y| dl (l/ lβf 2
) diverges for large|x−y|.

This occurs atβ = 2/f 2. Beyond this point, there is a proliferation of kinks and antikinks;
for large separations mod(nk − nk, 1/f ) is equally likely to assume any of its allowed values,
and there is no LRO.
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In more detail, the density–density correlation function can be expressed in terms of the
set of functions

C(ν)(j − k) = 〈exp{2π iν(uj − uk)}〉 (17)

with ν = 1, 2 . . . . The preceding discussion only deals withν = 1; other values ofν give rise
to corrections to the correlation function that decay more rapidly, and therefore do not affect
the leading asymptotic behaviour.

3. Exact duality in Villain–sine-Gordon theory

In this section we consider a particular type of sine-Gordon theory that corresponds to a Villain
approximation [15] of the cosine function, hence the Villain–sine-Gordon model (VsG). The
advantage of this model is that one has an exact duality reminiscent of the Kramers–Wannier
duality in the 2D Ising model. Towards this end we begin by considering a model for the
energy in the sense of models described in equation (6), a sine-Gordon model given by

βHsG = πβ

2

∑
q

hqũq ũ−q + βg
∑
j=1,N

[1− cos(2πuj/f )]. (18)

The Gaussian propagatorhq is specified partly by giving its leading behaviour ashq =
|q| + O(q2) for small q, the sum is over theN wavevectorsq, obeying−π 6 q 6 π .
The partition function is obtained by writing

ZsG=
∫
5j duj exp(−βHsG).

The Villain version of this model is defined by the partition function

ZV sG[β, g] =
∑

ξj=0,±1,...

∫
5j duj exp

[
− πβ

2

∑
q

hqũq ũ−q − 2π2

f 2
gβ
∑
j

(uj − f ξj )2
]

(19)

corresponding to a periodic function replacing the cosine in equation (18), as usual, with the
correct quadratic coefficient. The VsG model is defined by the above partition function, and
the rules for computing the correlation functions given in equation (17), in terms of which
the original density–density correlation function of equation (2) can be expressed. (Formal
expressions forC(1)(j−k) for the VsG model are given in the appendix, but the RG arguments
of the previous section are sufficient to obtain the qualitative behaviour.) The evaluation of the
partition function is done by two different ways, leading to the same kink partition function,
but with different parameters, and hence the duality follows.

The first method. This is similar to the phonon representation described above, and is based
on the Poisson summation formula:∑
ξj=0,±1,...

exp

[
−2π2

f 2
gβ(uj − f ξj )2

]
=
√

1

2πgβ

∑
mj=0,±1,...

exp

[
2π imjuj

f
− m2

j

2gβ

]
.

This is substituted in equation (19), leading to a shifted Gaussian in the variablesũq , which
can be integrated out, yielding a product form for the partition function

ZV sG[β, g] = (2πgβ)−N/2Zgauss(β, {hq})Zvortex [β, g] (20)

with

Zgauss(β, {hq}) = 5q

(
2

βhq

)1/2

. (21)
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With m̃q defined as 1/
√
N
∑

exp(iqj)mj , Zvortex is given by

Zvortex [β, g] =
∑

mj=0,±1,...

δ0,
∑
mj exp

[(
− 1

2βg

)∑
m2
j −

2π

βf 2

∑
q

1

hq
m̃qm̃−q

]
(22)

where the constraint
∑
mj = 0, arises from the vanishing ofhq at smallq.

The second method. In equation (19) we fix a set of{ξj } and then shift the variables
uj = u′j + f ξj . Next, we integrate out the (still Gaussian) variablesu′j using

〈ũ′q ũ′−q〉 =
1

βπ

1

hq + α−1
(23)

whereα is defined as

α = f 2

4πg
(24)

and find a factorization

ZV sG[β, g] = Zgauss [β, {hq + α−1}]Zrough[β, g]

Zrough[β, g] =
∑

ξj=0,±1,...

exp

[
− 1

2
βπf 2

∑
q

hq

αhq + 1
ξ̃q ξ̃−q

]
. (25)

The second part of the above is best seen as a roughening model with discrete height variables
ξj = 0,±1, . . . interacting with a potential that is long-ranged∼ 1/r2, since the propagator
is linear in|q|, for small |q|. In order to proceed, we define dual variables:ηj = ξj+1 − ξj .
These satisfy the condition

∑
ηj = 0 due to periodic boundary conditions and have a natural

interpretation in terms of height differences in the roughening model. In terms of Fourier
components(η̃q, ξ̃q) = 1/

√
N
∑

exp(iqj)(ηj,ξj ), we haveη̃q = (exp(iq)− 1)ξ̃q , and so the
roughening model becomes

Zrough[β, g] =
∑

ξj=0,±1,...

exp

[
− 1

4
βπf 2

∑
q

hq

(αhq + 1)(1− cos(q))
η̃q η̃−q

]
. (26)

The propagator is now again of the form1|q| for small |q|, and hence we can hope to get a
more exact equality. This motivates us to choose the functionhq → h∗q(α) which satisfies a
quadratic equation:

1

4
πf 2

h∗q
(αh∗q + 1)(1− cos(q))

= f 4

4

[
2πα

f 2
+

2π

f 2h∗q

]
. (27)

Thus, providedα 6 1
2, we have a self-dual propagator

h∗q =
2| sin(q/2)|

1− 2α| sin(q/2)| . (28)

It is readily seen thath∗q = |q| + O(q2) for small|q|. This choice gives

Zrough[β, g] =
∑

ξj=0,±1,...

exp

[
− 1

4
βπf 4

∑
q

(
1

g
+

2π

f 2 h∗q

)
η̃q η̃−q

]
(29)

= Zvortex
[

4

βf 4
, g

]
. (30)

The second equation follows from comparing the first with the definition of the vortex partition
function equation (22). For the self-dual propagator,h∗q , we see thatZrough andZvortex are in
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fact independentof g, and are equivalent to the model studied earlier by Kjaer and Hilhorst [9].
However, the originalZV sG is still g dependent. The implications of this will be discussed
further in the last section of this paper. Hence we have the final result:

ZV sG[β, g] = Zgauss [β, {h∗q + α−1}]Zvortex
[

4

βf 4

]
. (31)

A comparison of the above with equation (20) provides the exact duality relation for this choice
of h∗q :

Zvortex

[
4

βf 4

]
= Zvortex [β]5q

(
h∗q + α−1

2πgβh∗q

)1/2

. (32)

There are several comments to be made at this point. First, the restrictionα 6 1
2 implies

that the coupling constantgmust be large enough in equation (19); too weak a periodic potential
would have large fluctuations iñuq , that are not acceptable to this relation. In the limit of infinite
g the relation is particularly simple, namelyα = 0 and henceh∗q = 2| sin( q2)|. In this case
the Villain approximation also would be exact for the sine-Gordon model equation (18). The
series of equivalences that have been established here can be summarized in the following
diagram:

ZV sG[β, g] ←→ Zvortex [β]
m ↑

Zrough[β] Zrough

[
4

βf 4

]
↓ m

Zvortex

[
4

βf 4

]
←→ ZV sG

[
4

βf 4
, g

]
.

(33)

Here the symbols↓, m and←→ symbolize relations via equations (29), (25) and (20),
respectively. We see that the critical temperature of the model, if unique, is constrained to be
βc = 2/f 2. There is of course no guarantee that there is no other critical point, if so, they
must occur in pairs and satisfy the product conditionβ1cβ2c = (2/f 2)2. As mentioned earlier,
it has been argued from RG considerations that there is only a single critical point; numerical
evidence is presented in the next section.

4. Numerical results

The results in the previous sections have been based on perturbative calculations in the
parameterg to obtain its relevance or irrelevance under renormalization. Although it has been
argued that such perturbative considerations are in fact valid for allg [11] for the continuum
sine-Gordon theory, it is nevertheless useful to compare the results with numerical simulations,
since the largeg regime could be different for the continuum and discrete models.

Correlation functions for the DCG on a ring were computed numerically. Only the case of
half-filling (f = 1

2) was considered. The numerics were performed by starting in an ordered
configuration, and evolving the system under Monte Carlo dynamics for some temperature.
Various values ofβ were chosen, starting fromβ = 4 on the high-temperature side, toβ = 9
on the low-temperature side. This range covers the freezing transition atβ = 2/f 2 = 8.

Figure 2 shows a log–log plot of the connected part of the correlation function,Kc(r),
as a function ofr for β = 4. For convenience of representation, a factor of(−1)r has been
removed fromKc(r), so that it represents the deviation from perfect crystalline order. Lattice
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Figure 2. Log–log plot of the correlation function for
β = 4. System sizes range from 30 to 960. Error bars
are smaller than the symbols (except for the last three
points). The broken line corresponds to a power law with
exponent−1, as per the exact result of Mehta [7].

Figure 3. Log–log plot of the correlation function for
β = 6. System sizes range from 30 to 960. Error bars are
smaller than the symbols. The broken line corresponds
to a power law with the best fit exponent−0.553, which
is significantly different from the theoretical result. This
can be understood in terms of corrections to the scaling
form, as shown in figure 4.

sizes ofL = 30 through 960 were used. The correlation function is described very well by
a power law decay with an exponent 1:Kc(r) ∼ 1/r. This is in agreement with the exact
result [7].

For anyβ < 8, we expect a power law decay ofKc(r) with an exponent 4/β. However,
figure 3 shows a log–log plot ofKc(r) for β = 6; the apparent slope is significantly different
from 4/β = 2

3.
One has to be careful in interpreting this result, since asβ → 8, the irrelevant operator

g renormalizes to zero more and more slowly, so that corrections to scaling could affect the
apparent exponent over a fairly wide regime. To test whether the slope in figure 3 can indeed be
explained by leading irrelevant corrections, we try to fit the correlation function to the scaling
formKc(r) ∼ r−2/3K̂c(r/L; gr−1/3). This is the specific case forβ = 6 of the general scaling
form

Kc(r) ∼ 1

r4/β
K̂c(r/L; gr(1−8/β)) (34)

based upon the RG flow ofg, namely dg/dl = g(1− 8/β) + O(g3), withKc(a, b) possessing
a regular expansion fora, b ∼ 0. If Kc(r)r2/3 is obtained forr = λL for fixedλ and varying
L, the result should then be a function ofλ andgr−1/3. For smallg, one would expect this to
be a linear function ofr−1/3. Figure 4 shows such a plot ofKc(r)r2/3 as a function ofr−1/3 for
various values ofλ. A set of straight lines is obtained, consistent with the scaling prediction.

In view of the strong dependence onβ of the dimension of the operatorg, it is not very
useful to try this for larger values ofβ, since the range one obtains forL1−8/β is quite limited.
Conversely, there is no sign of any corrections to scaling forβ = 4, because of the rapid decay
of g under renormalization.

At β = 8, the operatorg is marginal. This is not just a perturbative result; based on the
continuum model, one expects a line of fixed points forβ = 8, with continuously varying
asymptotic behaviour as the initialg is varied. In order to check this scenario, we performed
Monte Carlo simulations on a slightly modified version of the DCG at half-filling. The lattice
size was doubled, corresponding tof = 1

4, but the particles were biased to be on the even
sites of the lattice by adding an extra potential to the odd sites. It is clear that if the bias is
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Figure 4. Correlation function forβ = 6, multiplied
by its asymptotic power law decay. Thex-axis plots the
r-dependence of the leading irrelevant operator,g. The
different symbols correspond tor = λL with different
values ofλ. Apart from the smallest values ofr, the data
fits reasonably well to a set of straight lines. Note thatr

decreases along thex-axis.

Figure 5. Log–log plot of the correlation function for
β = 8, and system sizeL = 960 showing the effect
of varying the initial g, a marginal operator. Error
bars are smaller than the symbols. The different curves
correspond to different values of the bias, which is the
relative ‘Boltzmann’ weight of the odd sites compared
to the even sites. The correlation function is computed
by first coarse graining the density, so that there are
effectively 480 sites (corresponding to 240 particles at
half-filling), and removing the factor of(−1)r . As the
bias changes, the correlation function evolves smoothly,
with no universality seen even for larger.

infinite, the system is equivalent to the DCG at half-filling, while with zero bias, one has the
DCG at quarter filling. In general, the lattice structure can be represented as a strong (strictly
speaking, singular) potentialW(u) that is periodic underu→ u + 1

4, and an additional weak
potentialV (u) that is periodic underu → u + 1

2. The strength ofV (u) depends on the bias
favouring the even sites. SinceW(u) is irrelevant forβ < 32, only the potentialV (u) affects
the asymptotics. As one adjusts the bias, which corresponds to changingg, one should see a
continuous evolution in the asymptotic behaviour ofKc(r). Figure 5 shows that this is indeed
the case forL = 960.

Beyond the transition, figure 6 shows the correlation function forβ = 9, indicating that
LRO has set in. The slow decay of the operatorg in the dual representation (since 64/β is not
much less than eight) leads to the long transients in the correlation function. By comparison,
the correlation function atβ = 10, shown in figure 7, approaches the asymptoticr → ∞
limit much more rapidly. We did not increaseβ beyond this, because we do not expect to
see any qualitative change in the correlation function, and because asβ is increased, it takes
progressively longer for the system to equilibrate.

Thus we see that the numerical results at half-filling for the density density correlation
function agree on both sides of the freezing transition with the analytical results obtained in
the previous sections.

5. Discussion

In this paper, we have obtained the phase diagram for the 2D Coulomb gas on a 1D lattice,
which emerges as a generalization of the wavefunction of a spin-1

2 Heisenberg antiferromagnet
in one dimension. We have seen that the gas freezes into a state with LRO below a freezing
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Figure 6. Log–log plot of the correlation function for
β = 9. System sizes range from 30 to 960. Error bars are
smaller than the symbols. The broken line is of the form
A+Br−1/8, which includes the leading scaling correction
to the LRO. The parametersA andB are adjusted for
approximately the best fit to the eye, and are both equal
to 0.1.

Figure 7. Log–log plot of the correlation function for
β = 10. System sizes range from 30 to 960. The
broken line is of the formA+Br−1/4, which includes the
leading scaling correction to the LRO. The parametersA

andB are adjusted for approximately the best fit to the
eye, and are chosen to beA = 0.189 andB = 0.032.
With these parameters,C(∞)/C(0) is estimated to be
approximately 0.75.

temperatureTc = f 2/2 that decreases as the density is reduced. Above this temperature,
the gas has quasi LRO, with continuously varying exponents. The dependence of the LRO
on β is thus quite dissimilar to the dependence of LRO upon1 in theXXZ model. In
the latter, the isotropic point is at the brink of crystallization, whereas in this problem, the
wavefunction atβ = 4 for the Haldane Shastry model [1,2] is well inside the power law phase,
since crystallization only sets in forβ > 2/f 2. On the other hand, the wavefunctions require
‘umklapp’ forβ > 2/f beyond which the kinetic energy ceases to act in a simple way on these
functions [4].

The strong connections that exist in earlier work [9–12,16] have been alluded to; we return
to them here in more detail. In section 3, we considered a one-parameter family of Villain–
sine-Gordon models at each temperature, to obtain an exact duality transformation; the family
was parametrized byg. Rather surprisingly, all the models in the one parameter family map to
the same roughening model, independent ofg. As shown in the appendix, formal expressions
for the correlation functions of the VsG model can be obtained in terms of the roughening
model, with the parameterg affecting the expressions only at short distances. This implies
that, for any inverse temperatureβ, all the VsG models (independent ofg) flow to the same
fixed point under renormalization. Although this is reasonable at any other temperature, it is
somewhat unexpected forβ = 2/f 2, where one has a line of fixed points. Althoughg is a
marginal operator here, the self-dual propagatorh∗q , and therefore the strength of the irrelevant
operators, depend ong. One must conclude that, within the one parameter family that we
construct, this change in the irrelevant operators is just sufficient to driveg to the same fixed
point under renormalization, regardless of its bare value. Of course, one could obtain a duality
mapping between VsG models with different, ‘conjugate’, choices ofhq , chosen to satisfy
2(1− cosq)(α + 1/hq) = h′q/(1 +α′h′q). However, although this would allow one to access
other fixed points atβ = 2/f 2, one would not have (strict) self-duality.

As mentioned earlier, the roughening model constructed in section 3 has been studied
earlier by Kjaer and Hilhorst [9]. They obtained the phase diagram we have here, and at (in
our notation)β = 2/f 2, exploit the self-duality to calculate the〈mqm−q〉 correlator. As shown
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in the appendix, the correlation function for the VsG model (and ultimately the Coulomb gas)
is related to〈exp i[m(x) − m(y)]〉. It is tempting to conjecture thatm(x) can be treated as a
Gaussian variable for the long-distance form of this correlation function, especially because
using the result of Kjaer and Hilhorst then yields a power law decay for the VsG correlation
at the self-dual point with thesameexponent,1

4, with two different approaches given in
equations (A2) and (A3). However, numerical simulations we have conducted for the VsG
model (f = 1

2, β = 8) do not bear this out: the numerical exponent is approximately1
8.

The continuum version of the long-range 1D sine-Gordon has been studied extensively in
connection with dissipative quantum mechanics [10], Luttinger liquids [11], and the quantum
Hall effect [12]. However, the duality transformation is slightly different from the discrete
case [10]. For largeg, u(x)must be close to an integer everywhere; a kink consists of a rapid
change ofu(x) from one integer to another. If (without a lattice cut-off) the theory is regulated
with anmq2 term in the propagator foru, it is clear thatu(x) cannot change discontinuously.
The competing effects ofg andm then yield an effective kink size of∼ √m/g, and a kink
fugacity of∼ exp(−β√mg). This is equivalent to a sine-Gordon theory expanded in powers
of the cosine interaction, provided one choosesgD ∼ exp(−β√mg). Thus we see that the
largeg regime maps to smallg under duality. This is in contrast to the discrete model, whereui
can jump from one integer to another asi increases by 1, without any extra (i.e. not accounted
for by hq) energy associated with the kink. Indeed, in the Villain version studied in section 3,
a largeg maps to the same (large)g under duality.

The RG flows for the continuum model were obtained [11] in the small coupling constant
regime. Exploiting the duality transformation, it was possible to obtain the RG flows for
very large coupling constants as well. It was argued that the RG flows could be connected
smoothly between these two extremities; this was strengthened by showing that at the self-dual
‘temperature’, which corresponds to the scattering of non-interacting fermions from a barrier
in the Luttinger liquid version, one should indeed have a line of fixed points.

While for a small coupling constant the discrete and continuum versions should not differ
in any physical way, this is not necessary when the coupling constant is large. Thus the
possibility of a non-trivial strong coupling phase cannot be ruled out for the discrete model
based on continuum arguments. Our numerics indicate that the Coulomb gas shows the same
behaviour as the continuum model, suggesting that it is unlikely that there is such a strong
coupling phase. Notice that, although the RG flows are oppositely oriented forβ > 2/f 2

andβ < 2/f 2, under the duality transformation of section 3 a larger coupling constant maps
to a larger coupling constant, emphasizing the importance of the simultaneous change in the
irrelevant operators.

A 1D Coulomb gas with logarithmic interactions was considered earlier by Anderson
et al [17] in their study of the Kondo problem. This is equivalent to the kinks in a ferromagnetic
Ising spin chain with long-range coupling∼ 1/r2. However, the ferromagnetic nature of
the underlying order forces charges to alternate. As shown by a real space RG calculation
[17], integrating out tightly bound charge pairs renormalizes the strength of the logarithmic
interaction between the remaining charges. Thusβ flows under the RG, and one obtains the
2D Kosterlitz–Thouless [14] phase diagram. For finite coupling constants (or charge fugacity),
this prevents one from exactly obtaining the phase transition point.

Note added in proof. Professor P J Forrester has brought his paper [18] to our attention. This work addresses the
effect of adding a periodic potential to the continuous log-gas, and also finds a transition. We thank him for the same.
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Appendix. Correlation functions

In this appendix, we obtain expressions for the correlation functionC(1)(j)within the Villain–
sine-Gordon theory using the two methods described in section 3: the low- and the high-
temperature limits. We begin by writing the correlation function explicitly as follows:

C(k − l;β, g) = 〈exp 2π i(uk − ul)〉 = 1

ZV sG(β, g)

∑
ξj=0,±1,...

∫
5j duj exp[9]

9 = −βπ/2
∑

hqũq ũ−q − 2π2

f 2
βg
∑
j

(uj − f ξj )2 + 2π i(uk − ul).
(A1)

We can proceed to evaluate this by the two methods discussed above.

The first method. We use the Poisson formula to trade the integer valued variablesξj in favour
of them′j and find

C(k − l;β, g) = 1

ZV sG(β, g)

∑
ξj=0,±1,...

∫
5j duj exp

[
− βπ/2

∑
hqũq ũ−q

+2π i/f
∑

m′juj
]

wherem′j = mj if j 6= k, l andm′k = mk + f , m′l = ml − f . Now it is straightforward to
integrate out the Gaussian variablesuj and in terms of the variables̃mq defined earlier and
δm̃q = f√

N
(exp(iqk)− exp(iql)), we find

C(k − l;β, g) = exp

[
− 4π

βN

∑
q

1

hq
{1− cos(qk − ql)}

]
×
〈

exp− 4π

βNf 2

∑
q

1

hq
m̃qδm̃−q

〉
vortex[β,g]

. (A2)

The prefactor decays as a power law at allβ, and the average in the second term is over the
vortex partition function.

The second method. We fix the variablesξj in equation (A1) and shift the variables
uj = u′j + f ξj , and integrate overu′j . We next use the difference variablesηj = ξj+1− ξj , as
in derivation of the roughening model equation (26), and find after some manipulations

C(k − l;β, g) = exp

[
− 4π

βN

∑
q

1

hq + α−1
{1− cos(qk − ql)}

]
×
〈

exp
2π i

N

∑
q

1

(1 +αhq)(exp(−iq)− 1)
η̃−qδm̃q

〉
vortex[4/(βf 4),g]

. (A3)

The remarkable identity of equation (A2) and equation (A3) is a consequence of the two
representations of the partition function. These are in general very hard to evaluate, the only
simple situation is the case of very low temperatures, where we can assume a dilute gas of
vortex–antivortex pairs.
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